
  151 

Writing Tested Code

9
Everyone likes to think that they write perfect code the first time. Rust
even makes it easier to write correct code since its strong type system eli-
minates whole classes of errors such as buffer overflows and use-after-free
issues. However, there are always logical errors that can creep into code
written by the best-intentioned developer. Who has not inverted the logic
of a test or returned the wrong value out of a function? While Rust cannot
provide implicit protections for those types of bugs, Rust does integrate a
testing framework into the toolchain that makes it easy for developers to
write test functions.

If you are only writing code for your own use, you can probably get away
with just writing unit tests to make sure that individual functions are wri-
tten correctly. However, if you are writing code that is being shared with
others (perhaps you are publishing a crate on crates.io), then you may
want to provide more types of tests such as integration tests that test the
boundaries between your modules, documentation tests that verify that
the examples you provide in your documentation is correct, or benchmark
tests that assist you in performance testing. As we will explore in this
chapter, Rust’s test framework supports developers in writing all of these
types of tests.

152  ◆  chapter 9  ❱  Writing Tested Code

To demonstrate how Rust assists you in writing tests, we will first walk
through an easy-to-understand data structure API for a minimum binary
heap that lives in a fictional binheap crate and use that as a structure on
which we can hang our tests.

A Minimum Binary Heap
In computer science, a minimum heap is a tree-like data structure that
satisfies the heap property – given a tree, the parent of the tree has a stri-
ctly smaller value than the children of that parent. But what does the heap
property actually mean? Well, take a minimum binary heap, for example.
A minimum binary heap is a binary tree structure where a parent can
have 0, 1, or 2 children and the value of each child node is strictly less than
the value of the parent node. However, a minimal binary heap is only par-
tially sorted — while a binary search tree is absolutely ordered – meaning
that the order of insertion into the tree does not affect the order of the tree
and a depth-first traversal of the tree will produce the contents of the tree
in order, the same does not hold for a minimal binary heap. Only upon
extraction from the heap will you produce an absolute ordering of the con-
tents of the heap.

Why would you want to use a heap, then? What good is a partially-ordered
tree? Typically, a heap is used to implement a priority queue. In a priority
queue, the absolute order of the queue does not matter. Instead, we always
want to extract the item with the lowest priority from the queue. So, why
would we want to take the extra cycles keeping the tree absolutely orde-
red when all we care about is that at the root of the tree is the minimum
value? A minimum binary heap gives us just this property. For example,
take a look at Figure 9-1.

A Minimum Binary Heap  ◆  153

10 5 13 2

2 5 10 13

2 5 13 10

heap insert

heap extract

binary tree view vector view

2

5 13

10

At the top of the figure, we have a stream of data that we want to insert
into our priority queue (our heap). We insert them into the heap from left
to right and produce the two views of our heap – one as a binary tree with
a very explicit node structure and another laid out as a vector in memory.
Finally, at the bottom of the figure, we can extract each element from the
heap, producing the ordered view of the values from least to greatest. From
the figure, we can gleam another property from our heap – the absolute
root of the tree must be the smallest value in the heap.

How we implement the heap is not relevant for the purposes of this chap-
ter, but we do need to take a look at the interface that the heap provides so
that we can test it appropriately.

Figure 9-1:
Insertion into and
extraction from a
binary heap

154  ◆  chapter 9  ❱  Writing Tested Code

use std::fmt::Debug;
#[derive(Debug, Clone)]
pub struct MinBinaryHeap<T: Debug + Ord> {
 buf: Vec<T>,
}

impl<T: Debug + Ord> MinBinaryHeap<T> {
 pub fn new() -> MinBinaryHeap<T> {
 MinBinaryHeap { buf: Vec::new() }
 }

 fn left(&self, idx: usize) -> Option<usize> {
 ...
 }
 fn right(&self, idx: usize) -> Option<usize> {
 ...
 }
 fn parent(&self, idx: usize) -> usize {
 ...
 }
 pub fn root(&self) -> Option<&T> {
 self.buf.get(0)
 }
 pub fn insert(&mut self, value: T) {
 ...
 }
 pub fn extract(&mut self) -> Option<T> {
 ...
 }
}

From this interface, we can determine a few things about the implemen-
tation that might be useful for testing purposes. First, we are backing the
heap with a simple vector instead of building out a full tree structure.
There are non-public methods that let us get at the index of a parent node
or, given a parent node, the left and right indices of the children nodes.
Since the child nodes may not exist, we return those indices as Options.
Our public interface consists of a method root that allows us to peek at the
root, or minimal, value of the heap. Additionally, we have public methods
– insert and extract – that allow us to add and remove values from the
heap, respectively.

Given those methods, what are some simple tests that we can add to verify
that our heap code is correct? For that matter, how do we even add tests to
our Rust code?

Simple Unit Testing  ◆  155

Simple Unit Testing
The simplest kind of tests that we can add to Rust code is the unit test.
A unit test is a test of the smallest possible unit of code. In the case of
Rust code, our units are typically individual functions or methods that are
implemented on a data structure. To support unit tests, Rust has special
markers that you can put on functions to declare that those functions are
tests that can be extracted out and run by Cargo when you run the cargo
test command. When you execute the cargo test command, you will see
output similar to the following:

$ cargo test
 Finished debug [unoptimized + debuginfo] target(s) in 0.0 secs
 Running /Users/jonathan/Documents/Programming Rust/src/chapter_09/
binheap/target/debug/deps/binheap-148856f953ef21b1

running 4 tests
test tests::new_heap_empty ... ok
test tests::insert_adds_value ... ok
test tests::extract_pulls_min_value ... ok
test tests::new_heap_empty_unwrap ... ok
test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured

This example test run lists how many test functions were found in the
crate, the name of each of the test functions with their pass state, and a
summary line at the end. In this test run, our crate has four test functions,
and they all passed. Now that we know how to run the unit tests that we
want to create, we can demonstrate creating one of those simple unit tests:

u #[cfg(test)]
 mod tests {
 use super::*;

v #[test]
 fn new_heap_empty() {
 let mut heap: MinBinaryHeap<usize> = MinBinaryHeap::new();
 assert_eq!(heap.buf.len(), 0);
 assert_eq!(heap.extract(), None);
 }

 #[test]
 #[should_panic]
 fn new_heap_empty_unwrap() {
 let mut heap: MinBinaryHeap<usize> = MinBinaryHeap::new();
 heap.extract().unwrap();
 }
}

156  ◆  chapter 9  ❱  Writing Tested Code

The above code example should live in the same source file as the imple-
mentation for the heap. The first interesting bit of the example is marked
u – the #[cfg(test)] line. When Cargo builds your test programs, it enables
the test feature that can be detected by the #[cfg(test)] line. In this case,
the tests module is only compiled in the source file when the test feature
is enabled so that test code does not exist in your actual module. Inside of
the tests module, we are importing all of the symbols that are defined in
the parent module (the rest of the source file). This will let us easily call the
functions that we want to test.

The other interesting bit in the example is marked v – the #[test] line.
This line tells the Rust compiler that the following function is a test fun-
ction and should be run as part of the test framework. Inside of that test,
we simply create a new MinBinaryHeap for usize values and make sure that
it is empty. Since we know that the heap is backed by a vector, we can just
assert that the vector has a 0 length. Additionally, for an empty heap, we
want to make sure that the extract method correctly returns None, so we
use another assertion. In the test, the assert_eq! macro is used to check
whether two expressions are equal to each other. If they are not, the macro
panics. Rust assumes that a panic corresponds to a failing test. If the test
function runs to completion, then the test is considered passing.

We could have re-written those assertions using the general assert! macro
like the following:

assert!(heap.extract().is_none(), "got unexpected value");

The general assert! macro takes any expression as the first argument and,
if it evaluates to be true, succeeds. Otherwise, the assert! macro panics
and provides the optional second argument as the panic message.

In the second test function we added, there is another directive passed to
the compiler, the #[should_panic] directive. That directive inverts Rust’s
assumption that a panic corresponds to a failing test. If you specify that
the test should panic, then a panic corresponds to a passing test and, if the
function does not panic, then the test failed. If you are writing tests where
you are wanting to make sure that your functions correctly return an error
state, consider putting #[should_panic] on the test and simply unwrapping
the return. It can make your test code much more concise and easier to
understand.

Property-Based Unit Testing  ◆  157

For brevity, we did not show an implementation for unit tests for the insert
and extract functions. However, that leads to an interesting problem. How
can we test, in general, that those methods are doing the right thing? In a
unit test, we can create several contrived test cases that will push at the
boundary conditions of our functions, but how can we be sure that we are
really covering all of our bases? What if, instead of writing test cases, we
simply tested that our functions generally met the requirements they are
supposed to implement? We can do that with property-based unit testing.

Property-Based Unit Testing
The main idea behind property-based testing is to make general asserti-
ons about your code by writing property functions that will succeed when
your code is valid. Then, you use a property-testing library to automati-
cally generate test cases and run them against your properties to ensure
that they hold. The most well-known library for property-based testing is
QuickCheck — a Haskell library for automatically generating test cases.
QuickCheck has been ported to many programming languages, including
Rust. We will use the quickcheck crate to generate heap test cases by imple-
menting the Arbitrary trait for our data structure.

 extern crate quickcheck;
 use quickcheck::{Arbitrary, Gen};
 impl<T: Arbitrary + Debug + Ord> Arbitrary for MinBinaryHeap<T> {
 fn arbitrary<G: Gen>(g: &mut G) -> Self {
 let mut src: Vec<T> = Vec::arbitrary(g);
 let mut arb = Self::new();
 for value in src.drain(..) {
 arb.insert(value);
 }
 arb
 }
 }

The example code above would be included in our tests modules in the
crate source file. In it, we are pulling in the Arbitrary and Gen traits. The
Arbitrary trait is used to specify that the data structure can be automa-
tically generated (that we can produce an arbitrary instance of the data
structure). The Gen trait represents a generator — a trait that produces
random values and can be used to help generate our Arbitrary values. In
addition to these two traits, the quickcheck crate provides implementations

158  ◆  chapter 9  ❱  Writing Tested Code

of the Arbitrary trait for many types in the standard library, including
the primitives, vectors, strings, maps, tuples, and even Option and Result
types. That makes our implementation for MinBinaryHeap<T> simple, since
we can create an Arbitrary Vec<T> and populate our MinBinaryHeap from
that. Now that we have a way to generate arbitrary heaps, what can we do
with them?

The quickcheck crate provides a handy macro, called quickcheck!, to let us
easily define properties that we want to test. But, which properties should
we choose? To answer that, let us go back to our definition of the minimum
binary heap. One of the properties of a minimum binary heap is that, for
every heap, the root value of the heap should be the absolute minimum
value of the data structure. So, let us encode that property as a function.

quickcheck! {
 fn prop_root_is_minimum_value(xs: MinBinaryHeap<usize>) -> bool {
 let min = xs.buf.iter().min();
 match (min, xs.root()) {
 (Some(min), Some(root)) => min == root,
 (_, None) => true,
 (None, _) => unreachable!(),
 }
 }
}

There are a few pertinent features worth exploring here. First, note that
our property test is simply a normal function, declared inside of the quick-
check! macro. The function takes a MinBinaryHeap<usize>, which is a type
that has Arbitrary implemented on it (since MinBinaryHeap<T> implements
Arbitrary as does the primitive usize), and returns bool (whether or not
the property is met for the passed in data structure). When the tests are
run, the quickcheck library will execute the property function on up to 100
arbitrary instances of the heap and verify that the property passes. If the
property fails, the library will attempt to shrink the generated data stru-
cture to find the minimum failing test case and will print that out for you.

Looking further at the example, the property is fairly simple. We peek at
the interior buffer and get the minimum value of the buffer using the min
iterator consumer. Then, we peek at the root value using our public root
method. If the root value matches the minimum value, we succeed.

Property-Based Unit Testing  ◆  159

We can take a look at another example property to give you an idea of the
types of properties that are useful to define. One thing we want to deter-
mine is whether or not the insert function is producing valid heaps. Since
we are using insert in our definition of Arbitrary, we should really vali-
date it. According to our heap definition, for every sub-tree in our heap,
the parent of the sub-tree must be strictly less than either of its children.
We can encode that into a property.

fn prop_is_heap(xs: MinBinaryHeap<usize>) -> bool {
 for idx in 0..xs.buf.len() {
 let current = &xs.buf[idx];
 // If there is a right child
 if let Some(right) = xs.right(idx) {
 // It must be larger than the current value
 if current > &xs.buf[right] {
 return false;
 }
 }
 // If there is a left child
 if let Some(left) = xs.left(idx) {
 // It must be larger than the current value
 if current > &xs.buf[left] {
 return false;
 }
 }
 }
 true
}

The type of this function is identical to the previous one; it is a function
from a MinBinaryHeap<usize> to a bool. Once again, we exploit the fact
that this is a unit test and that we know the implementation details of
the data structure to walk every value in the interior vector. Each value
in the vector is the parent of a sub-tree, so we check to see if the sub-tree
has child nodes. If child nodes exist, we ensure that the values of the child
nodes are larger than the value of the parent. If all of the children are lar-
ger than all of the parents, then the property passes. Otherwise, it fails.

The power of property-based testing is that we are thinking up logical
properties that must hold for the data structure to be valid, instead of
trying to think up specific test cases that might show that our properties
hold. We are relying on the computer to do what computers do well — do

Variable Variable Lifetime Type Value Lifetime

y Line 2 – Line 4 [i32; 3] 'static

ret Line 3 – Line 4 &[i32] '$y

160  ◆  chapter 9  ❱  Writing Tested Code

the brute-force computation of generating test cases while we expend
programmer-time thinking at a higher level and encoding the invariants
in code that we already expect our data structure to meet based on its
requirements.

After spending time writing basic unit tests as well as enough property-ba-
sed tests that we feel confident that our data structure is implemented
correctly, we need to make sure that others can use the data structure
the way we intend it to be used. We can accomplish that with integration
testing.

Integration Testing
Where unit tests are meant to test small units of code, integration tests are
meant to be more general. Traditionally in Rust, a unit test will test only
code that is defined in the same file that contains the unit test. But how
can you test interactions between modules? How can you ensure that you
made all of your public APIs and data structures actually public? You can
write integration tests to make sure that your API can be used as intended.

Let us add an integration test to verify our public API for the heap data
structure.

// this code lives in tests/lib.rs
extern crate binheap;
extern crate rand;
use rand::{thread_rng, sample};

#[test]
fn it_works() {
 let mut rng = thread_rng();
 let data = sample(&mut rng, 1..1000, 100);
 let mut heap = binheap::MinBinaryHeap::new();

 // build up our heap
 for x in &data {
 heap.insert(*x);
 }

 let mut old: Option<usize> = None;
 loop {
 // extract each value
 let new = heap.extract();

Documentation Testing  ◆  161

 if new.is_none() {
 break;
 }

 // and ensure older value is smaller than
 // newer one
 if let Some(old) = old {
 if let Some(new) = new {
 assert!(old < new);
 }
 }

 old = new;
 }
}

There are a few interesting bits to this example. First, note that we are not
putting the test case inside of an existing source file in our crate. Rather,
we are putting the integration tests inside of a file in the tests directory.
Since the integrations tests do not live as a part of the crate, we have to
import the crate using the extern crate binheap syntax. Since we have to
import the crate, we only have access to public functions, public data stru-
ctures, and public fields, just like a consumer of our library would.

In this integration test, we are verifying that we can create a heap, insert
many random values into it, and remove them, in order, from smallest to
largest. This workflow, while contrived for a test, is roughly how we would
expect an end-user of the crate to use the API.

Documentation Testing
Closely related to integration testing is the idea of making sure that the
examples that you have documented in your API documentation always
compile and work properly. Rust has integrated support for generating
documentation, but it also has built-in support for extracting source code
from your documentation markup, compiling it, and running it as a docu-
mentation test.

In the following code example, we have very simply documented the
extract method for our MinBinaryHeap structure. In it, we provide a simple
description of the method followed by a block of example code that uses
the method.

162  ◆  chapter 9  ❱  Writing Tested Code

/// Extract the minimum value from the heap.
///
/// # Examples
///
/// '''
/// use binheap::MinBinaryHeap;
/// let mut heap = MinBinaryHeap::new();
/// for x in vec![42, 5, 13, 2] {
/// heap.insert(x);
/// }
/// let min = heap.extract().unwrap();
/// assert_eq!(min, 2);
/// '''
pub fn extract(&mut self) -> Option<T> { . . . }

In the documentation block, we can use standard Markdown markup to
insert headings, make text bold, or in this case, add a source block between
consecutive ''' markers. In the source block, simply document how the
API is meant to be used. In this case, we are building up a simple heap and
extracting the smaller value out of it. We are ensuring that we obtained a
value by putting the unwrap call after the extract and then asserting that
the minimum value we got is really the minimum value that we put in the
heap. Additionally, you can add multiple source code blocks and they will
each be extracted out as separate test cases.

Like all previous tests, you can run the documentation tests using the
same cargo test command. When they run, a separate section shows up
in the test output that looks like the following:

 Doc-tests binheap

running 3 tests
test MinBinaryHeap<T>::insert_0 ... ok
test MinBinaryHeap<T>::insert_1 ... ok
test MinBinaryHeap<T>::extract_0 ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured

In the output, you can see that three documentation tests were extracted
from the source code. In this case, the source code had two source code
examples associated with the insert method and a single example associa-
ted with the extract method.

Benchmarking  ◆  163

Benchmarking
The final type of testing we are going to discuss is slightly different than
other types of testing since there is no way to explicitly check for success
and failure. Benchmarking your crate is a good way to ensure that the
code you wrote is performant. In the case of our example crate, we want to
make sure that using our minimum binary heap to find the minimal value
is faster than sorting a vector of numbers to find the minimal value. Let us
take a look at some example benchmarking code:

// benches/bench.rs
#![feature(test)]
extern crate test;
extern crate binheap;
extern crate rand;

#[cfg(test)]
mod tests {
 use rand::{thread_rng, sample};
 use binheap::*;
 use test::Bencher;

 fn gen_sample() -> Vec<usize> {
 let mut rng = thread_rng();
 sample(&mut rng, 1..1000, 100)
 }

 #[bench]
 fn bench_extract_min(b: &mut Bencher) {
 let data = gen_sample();

 b.iter(|| {
 let mut heap = MinBinaryHeap::new();
 for x in &data {
 heap.insert(x);
 }
 heap.root();
 });
 }
}

The first thing to notice in the benchmarking code is that it lives in the
benches/ directory and requires the test feature gate to be enabled. The
test feature gate allows us to access the built-in test module which is used

164  ◆  chapter 9  ❱  Writing Tested Code

to import the benchmarking data types and functions; unfortunately, we
cannot enable the test feature gate using the stable compiler since the test
module API has not been completely stabilized by the compiler team – that
is, the Rust developers are still trying to ensure that they have gotten the
API correct before they agree to fully support it. So, to run benchmarking
tests, we will have to run the benchmarks with the nightly compiler. While
there is a risk that the benchmark API found in the test module of the
nightly compiler might change in the future, the Bencher::iter function
has been fairly stable in the past and being able to run benchmarking tests
is too useful to pass up. We can easily run the benchmarking tests with
the nightly compiler using rustup:

$ rustup run nightly cargo bench
running 2 tests
test tests::bench_extract_min ... bench: 725 ns/iter (+/- 549)
test tests::bench_min_iter ... bench: 1,402 ns/iter (+/- 383)

test result: ok. 0 passed; 0 failed; 0 ignored; 2 measured

Running cargo using the rustup command in this way will allow us to only
use the nightly compiler for running benchmarks while using the stable
compiler for all other builds.

Getting back to our source example, we can see that benchmark tests are
marked with #[bench] instead of #[test]. Additionally, the benchmark tests
all have the following signature: fn(&mut Bencher). The benchmark runner
passes in the Bencher type to the test. The Bencher type exposes a method
called iter that calls the passed-in closure many times — as many iterati-
ons as it takes for the timing per iteration to statistically stabilize. Since it
is up to our code to call the iter method, we can run as much setup code
per test that we need to without the setup code being benchmarked as well
— only the code that is run in the iter closure is benchmarked.

Key Takeaways  ◆  165

Key Takeaways
◆◆ Testing is an important part of the crate-creation process. Rust makes
it easy to integrate unit, integration, and documentation tests into your
build process.

◆◆ Using the external quickcheck crate, you can augment your unit testing
with property-based testing, making it easier to generate test cases for
verifying the invariants that your code guarantees.

◆◆ Rust has unstable support for running benchmark performance tests. It
makes it easy to write performance tests, although you will have to run
a nightly compiler to use the built-in functionality.

